1.	Universe is isotropic /same in all directions Homogeneous / evenly distributed	B1 B1	[2]
2.	Any four from: Uniform intensity in all directions / everywhere Structure in background intensity / ripples Produced when matter and radiation decoupled Originally gamma radiation (gamma) red-shifted to microwave / originally higher energy Evidence that universe began with big bang Temperature corresponds to 2.7 K / 3K / that predicted by big bang model Link between evidence and explanation. (1)	$B1 \times 4$	[5]
3.	Any two from: No experimental evidence / no physical evidence State of matter unknown / laws of physics unknown Energies unreproducible / ref. to very high temperature	$B1 \times 2$	[2]
4.	Open: Universe expands for all time Flat: expands to a limit (but never reaches it) Closed: Universe contracts / collapses back Reference to role of gravity / critical density Marks for (a) can be gained on a labelled diagram	B1 B1 B1 B1	[4]
5.	$\begin{split} H_{o}^{2} &= (1 \times 10^{-26} \times 8 \times \pi \times 6.67 \times 10^{-11}) \ / \ 3 \\ H_{o} &= 2.36 \times 10^{-18} \ s^{-1} \end{split}$	C1 A1	[2]
6.	$(5.2 \times 1.5 \times 10^{11}) = 7.80 \times 10^{11}$ m	1	[1]
7.	$v \alpha r / v = H_0 \times r (1)$	2	

 $v \alpha r / v = H_o \times r (1)$ labels (including one reference to Earth/Sun/Galaxy) (1)

[2]

2

1

8.	infinite Universe (1) all lines of sight end on star (1) so night sky should be bright/ not dark (1) either expanding Universe/light undergoes red shift (1) more distant galaxies have greater red shift (1) or age of Universe is finite (1) light from distant stars not yet reached Earth (1)		[5]
9.	 (i) accept description of plan view or side view. side: central bulge (1) galactic disc <u>each side (1)</u> plan: accumulation of stars in centre. (1) spiral arms (minimum of 2 arms) (1) 	2	
	(ii) correct position of Sun (accept 28000ly from centre) (1)	1	[3]
10.	(i) hydrogen / helium gas (1) formed after big bang / remnants of supernovas (1)		
	 (ii) critical density is condition for flat Universe. (1) dark matter increases density of Universe. (1) density greater than critical density. (1) Universe will contract / big crunch. (1) 		[6]
11.	any 4 from: end of H burning/red giant/supergiant (1) onset of He fusion/fusion of heavier nuclei (1) <u>gravitational</u> collapse of core (1) supernova explosion/ star explodes (1) suitable mass limit (chanderasekha limit 1.4M) (1) supported against gavity by neutron gas pressure/ ref to Fermi pressure (1) internal structure protons and electrons combined/ very thin atmosphere/ metallic crust (1)	4	[4]

(i)	volume = $4\pi (10,000)^3 / 3 = 4.2 \times 10^{12} (1)$ density = $3.5 \times 10^{30} / 4.2 \times 10^{12} \text{ ecf } (1)$ density = $8.4 \times 10^{17} \text{ kg/m}^3 (1)$	3	
(ii)	any two from density (very) much greater than material on Earth (1) quotes typical density on Earth $1 - 10^4$ kg m ⁻³ (1) atomic structure collapsed / density same as atomic nucleus (1)	2	[5]
(i)	energies/temperatures irreproducible on Earth / laws of Physics break down (1)	1	
(ii)	temperature decreases (1) universe expanding/work done against attractive forces/ energy converted to mass (1)	2	
(iii)	any 3 from protons and electrons separate initially (1) matter-radiation equilibrium/ <u>charge</u> prevents passage of em waves (1) proton-electron recombination /formation of atoms (1) gamma/ em waves no longer absorbed (1)	3	[6]
star-l galax reces cosm unifo smal (blac High Indic	light shows red shift (1) kies (stars) receding from Earth (1) asional velocity proportional to distance (1) aological microwave background radiation (CMBR) (1) orm intensity in all directions (1) l ripple (1) k body temperature) 2.7 K (3K) (1) ratio of helium to hydrogen (1) eates very high temperatures existed (1)	5	[5]
	 (ii) (ii) (iii) (iii) (iii) (iii) (iii) (iii) any for the second sec	 density = 3.5 × 10³⁰ / 4.2 × 10¹² ecf (1) density = 8.4 × 10¹⁷ kg/m³ (1) (ii) any two from density (very) much greater than material on Earth (1) quotes typical density on Earth 1 – 10⁴ kg m⁻³ (1) atomic structure collapsed / density same as atomic nucleus (1) (i) energies/temperatures irreproducible on Earth / laws of Physics break down (1) (ii) temperature decreases (1) universe expanding/work done against attractive forces/ energy converted to mass (1) (iii) any 3 from protons and electrons separate initially (1) matter-radiation equilibrium/charge prevents passage of em waves (1) proton-electron recombination /formation of atoms (1) 	density = $3.5 \times 10^{30} / 4.2 \times 10^{12} \text{ ecf (1)}$ density = $8.4 \times 10^{17} \text{ kg/m}^3$ (1) 3 (ii) any two from density (very) much greater than material on Earth (1) quotes typical density on Earth 1 – 10 ⁴ kg m ⁻³ (1) atomic structure collapsed / density same as atomic nucleus (1) 2 (i) energies/temperatures irreproducible on Earth / laws of Physics break down (1) 1 (ii) temperature decreases (1) universe expanding/work done against attractive forces/ energy converted to mass (1) 2 (iii) any 3 from protons and electrons separate initially (1) matter-radiation equilibrium/charge prevents passage of em waves (1) proton-electron recombination /formation of atoms (1) gamma/ em waves no longer absorbed (1) 3 any 5 from: star-light shows red shift (1) galaxies (stars) receding from Earth (1) recessional velocity proportional to distance (1) cosmological microwave background radiation (CMBR) (1) uniform intensity in all directions (1) small ripple (1) (black body temperature) 2.7 K (3K) (1) High ratio of helium to hydrogen (1) Indicates very high temperatures existed (1)

	proto	er-radiation equilibrium/ <u>charge</u> prevents passage of em waves (1) on-electron recombination /formation of atoms (1) ma/ em waves no longer absorbed (1)	3	[6]
15.	(i)	$\begin{split} H_0 &= 75 \ / \ 3.1 \times 10^{19} \ (1) \\ t_0 &= 1 \ / \ H_0 = 4.13 \times 10^{17} \ s \ (1) \\ t_0 &= 4.13 \times 10^{17} \ s \ / \ 365 \times 24 \times 3600 = 1.3 \times 10^{10} y \ (1) \end{split}$	3	
	(ii)	any two from universe expands to a limit/ flat universe (1) but never reaches that limit (1) density of universe = critical density (1)	2	
	(iii)	curve: passes through P (1) curves over and back to time axis (1)	2	
	(iv)	Universe not so old (no ecf from (iii)/ Universe will end in big crunch (no ecf from iii) / universe has finite lifetime (1)	1	[8]
16.	(a)	uniform intensity detected in all directions/ isotropic	1	
	(b)	Hydrogen and helium in early stars and sun Sun has greater proportion of helium than early stars/	1	
		H changed to He by fusion in sun. Virtually no higher elements in first stars/ sun contains	1	
		traces of higher elements (accept specific examples up to iron)	1	[4]

17.	red si calcu galax dista veloc	5 from hift data for galaxies (accept stars) late velocity from red shift ties/ stars receding from Earth nce data for galaxies/ stars tity α distance / v/r = constant / v-r graph straight line erse began at a single point	1 1 1 1 1	[5]
18.	densi densi any 2 fate u	al density is that for flat universe $ty > p_0$ universe closed/contracts/big crunch $ty < p_0$ universe open/ expands forever 2 from unknown because size/mass/density universe uncertain unknown because p_0 / H_0 not known	1 1 1 1 1	[5]
19.	Plane	ets move in <u>ellipses</u> (Sun at one focus) (1) et sweeps out equal <u>areas</u> in equal times. (1) $d^2 \alpha \text{ radius}^3 / T^2 / r^3 = \text{constant} (1)$	3	[3]
20.	(i)	$\begin{aligned} v/c &= \Delta \lambda / \lambda (1) \\ \Delta \lambda &= 656.3 \times 10^{-9} \times 6.1 / 3 \times 10^8 \text{ (ignore minus sign) (1)} \\ \Delta \lambda &= 1.33 \times 10^{-14} \text{ m (1)} \end{aligned}$	3	
	(ii)	Graph: any 4 points plotted correctly (1) all correct (1)	2	
	(iii)	graph: draw curve, reasonable attempt (1)	1	
	(iv)	Either point where star moves perpendicular to line of sight (1)	1	
	(v)	time = 72 h \pm (1)h (ecf read value from their graph \pm 1 h) (1)	1	
	(vi)	$\begin{split} r &= {}^{3}\sqrt{(6.7\times10^{-11}\times4\times10^{30}\times[72\times3600]^{2}/4\pi^{2})} \text{ ecf (1)} \\ r &= 7.70\times10^{9} \text{ m ecf . (1)} \\ (\text{use of } t = 72\text{h } 1/2) \end{split}$	2	[10]

correct reference to (1) AU (1)

21.

	parallax of (1) arcsecond (marks can be gained on <u>labelled</u> diagram) (1)	2	[2]
22.	Any 6 from Nuclear/hydrogen burning ends (1)		
	Mass > Chandrasekhar limit (1)		
	Expanding gas/planetary nebular/red giant (1)		
	Gravitational collapse /ref. to burning He or higher metals (1)		
	Correct ref. to (Fermi) <u>pressure</u> / radiation <u>pressure</u> (1) (must have ref. to pressure or force from radiation.)		
	Neutron star (neutron by itself, not enough) (1)		
	Correct reference to Schwarzschild radius/ allow mass> 3M/ allow ref. critical radius (1)		
	Black Hole (1)	6	[6]

23. Any 5 from

Uniform intensity in all directions/ everywhere (1) Structure in background intensity/ripples (1) Produced when matter and radiation decoupled (1) Originally gamma radiation (1) (gamma) red-shifted to microwave/originally higher energy (1) Evidence that universe began with big bang. (1) Temperature corresponds to 2.7K / 3K / that predicted by big bang model (1) 5 [5]

24. Any 2 from

No experimental evidence/ no physical evidence (1) State of matter unknown/ laws of physics unknown (1) Energies unreproducible/ ref. to very high temperature (1)

[2]

2

25. Open: Universe expands for all time (1)
Flat: expands to a limit (but never reaches it) (1)
Closed: Universe contracts/ collapses back (1)
reference to role of gravity/ critical density (1)
Marks for a. can be gained on <u>labelled</u> diagram.

26.
$$H_o^2 = 1 \times 10^{-26} \times 8 \times \pi \times 6.67 \times 10^{-11} / 3 (1)$$

 $H_o = 2.36 \times 10^{-18} \text{ s}^{-1} (1)$

[2]

[4]

4

2